DGM Lenia Gallery

DGM Lenia: Metamorphic Transitions in Artificial Life

Overview

Welcome to the official website for DGM Lenia research! This study delves into the fascinating world of Lenia, a continuous cellular automaton framework that enables the emergence of complex, autonomous lifeforms [1,2,3,4]. Building upon Lenia's capacity for self-organization, resilience, and adaptive behaviors, our research introduces Dynamic Growth Mechanisms (DGM) to explore the emergence and particularly metamorphosis-like transitions of artificial lifeforms [5].

Key Contributions

Through these mechanisms, we observed novel lifeforms of metamorphosis, where organisms undergo continuous yet abrupt transitions between different morphologies and behaviors, echoing processes observed in natural life.

For full details, see the README or the published paper [5].

DPh: Fig. 3: Gyrorbium-like state translates to Optium

R=19, (a0, λ0)=(0.2, 1), (μ, σ)=(0.07, 0.006), (δx, δy)=(0, 0)

DPh: Fig. 4: Optium pair-production and fusion into dioptium

R=13, (a0, λ0)=(0.1, 1), (μ, σ)=(0.06, 0.003), (δx, δy)=(0, 0)

DPh: Fig. 5: Optium changes its direction through intermediate Gyrorbium-like and eye-like states

R=13, (a0, λ0)=(0.1, 1), (μ, σ)=(0.05, 0.002), (δx, δy)=(0, 0)

DPh: Fig. 6: Optium appears from a ring-shaped state

R=13, (a0, λ0)=(0.2, 1), (μ, σ)=(0.07, 0.005), (δx, δy)=(0, 0)

DPh: Fig. 7: Optium has a ring-shaped resting state

R=13, (a0, λ0)=(0.1, 1), (μ, σ)=(0.05, 0.002), (δx, δy)=(0, 0)

DGM: Fig. 12: Transition from Dioptium to two Optium through an unstable Optium

R=19, (a0, λ0)=(0.1, 0.5), (μ, σ)=(0.08, 0.004), (δx, δy)=(19, 19)

DGM: Trioptium to Dioptijetgon through Dioptilinum

R=19, (a0, λ0)=(0.1, 0.5), (μ, σ)=(0.16, 0.013), (δx, δy)=(19, 19)

DGM: Fig. 13: Transition from Dioptigon to Dioptium

R=17, (a0, λ0)=(0.1, 0.5), (μ, σ)=(0.17, 0.014), (δx, δy)=(17, 17)

DGM: Fig. 14: Transition from Dioptigon to Dioptijetgon through Dioptilinum

R=15, (a0, λ0)=(0.1, 0.5), (μ, σ)=(0.16, 0.012), (δx, δy)=(15, 15)

DGM: Fig. 18: Optium was born with a ring-shaped state

R=19, (a0, λ0)=(0.2, 0.5), (μ, σ)=(0.08, 0.006), (δx, δy)=(19, 19)

DGM: Mobile entity in boundary area

R=19, (a0, λ0)=(0.1, 0.5), (μ, σ)=(0.14, 0.01), (δx, δy)=(1, 1)

DGM: Mobile entity

R=19, (a0, λ0)=(0.1, 0.5), (μ, σ)=(0.25, 0.03), (δx, δy)=(1, 1)

DGM: noculum

R=19, (a0, λ0)=(0.1, 0.5), (μ, σ)=(0.26, 0.034), (δx, δy)=(9, 9)

DGM: Mobile entity

R=19, (a0, λ0)=(0.1, 0.5), (μ, σ)=(0.26, 0.033), (δx, δy)=(6, 6)

References

  1. Chan BWC (2019). Lenia: Biology of artificial life. Complex Systems 28(3), 251–286.
  2. Chan BWC (2020). Lenia and expanded universe. In: Artificial Life Conference Proceedings 32, MIT Press, 221–229.
  3. 有田隆也, 川口貴子, 鈴木麗璽 (2022). セルオートマトンによる生命性の探究:ライフゲームから leniaへ. 人工知能 37(1), 12–18
  4. 有田隆也, 鈴木麗璽 (2023). Leniaから広がる人工生命の新たな可能性. シミュレーション 42(3), 133–142.
  5. Y. Kayama (2025). Metamorphic transitions in Lenia through Dynamic Growth Mechanisms . Artificial Life and Robotics, pp. 1–13, doi: 10.1007/s10015-025-01081-7.
  6. Kawaguchi T, Suzuki R, Arita T (2021). Replacement of the state-updating rule in the continuous cellular automaton model Lenia. In: Proceedings of the 26-th International Symposium on Artificial Life and Robotics, 90–95
  7. Kawaguchi T, Suzuki R, Arita T, Chan B (2021). Introducing asymptotics to the state-updating rule in Lenia. In: ALIFE 2021: The 2021 Conference on Artificial Life, MIT Press, DOI 10.1162/isal_a_00425